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1 Synopsis: Robust and Dependable Artificial Intelligence

Artificial intelligence (Al) is a disruptive force. Most major technology companies
employ or develop Al, and with growing applications in fields like healthcare [37],
transportation [48,68], game playing [51], finance [9], or robotics in general [44], it
is entering our everyday lives. We can expect that our societal and technological
involvement with Al will only intensify in the future. Such tight interaction with
AT requires serious safety and correctness considerations. Recently, the field of
safety in Al has triggered a vast amount of research with several seminal works
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Abstract. This talk highlights our vision of foundational and
application-driven research toward safety, dependability, and correctness
in artificial intelligence (AI). We take a broad stance on AI that com-
bines formal methods, machine learning, and control theory. As part of
this research line, we study problems inspired by autonomous systems,
planning in robotics, and industrial applications. We consider reinforce-
ment learning (RL) as a specific machine learning technique for decision-
making under uncertainty. RL generally learns to behave optimally via
trial and error. Consequently, and despite its massive success in the past
years, RL lacks mechanisms to ensure safe and correct behavior. Formal
methods, in particular formal verification, is a research area that pro-
vides formal guarantees of a system’s correctness and safety based on
rigorous methods and precise specifications. Yet, fundamental challenges
have obstructed the effective application of verification to reinforcement
learning. Our main objective is to devise novel, data-driven verification
methods that tightly integrate with RL. In particular, we develop tech-
niques that address real-world challenges to the safety of AI systems
in general: Scalability, expressiveness, and robustness against the uncer-
tainty that occurs when operating in the real world. The overall goal is
to advance the real-world deployment of reinforcement learning.

defining their view on this area [4,25,58,61].

Can Formal Verification Help to Ensure AI Safety? The area of formal
methods offers structured and rigorous ways to reason about the correctness
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of a system. Techniques range from model learning [66], over testing [36], to
formal verification [24]. As an example for the application of verification in Al,
solving techniques like SAT or SMT [11] help to assess the robustness of neural
networks [30,33,41]. A specific verification technique is model checking [10,19].
For a fixed system model, a plethora of methods assert the system’s correctness
regarding formal specifications. The rigor of model checking suggests it is natural
to employ model checking to prove the correctness of Al systems.

We focus on a specific branch of Al, namely decision-making under uncer-
tainty [45]. Intelligent AT agents typically operate in unknown or unpredictable
environments, coping with contextual changes at runtime or incompleteness of
information. This unpredictability leads to the problem that the outcome of deci-
sions made by an agent is uncertain. Reinforcement learning (RL) [64] agents
make decisions under uncertainty via the exploration of potentially unknown
environments. The area of safe RL [2,27] aims to restrict the behavior of an
agent with respect to safety, or with respect to more general correctness con-
straints.

Several shortcomings towards the potential deployment of RL in critical envi-
ronments remain. Specifically, we identify the following three main challenges to
the state-of-the-art in formal verification and its application for safe RL:

— Scalability to high-dimensional problems,
— Providing correctness guarantees in continuous spaces, and
— effective handling of uncertainty.

Indeed, common approaches and case studies for safe RL employ idealized
settings with a low number of dimensions that contribute to a problem. Most
approaches assume discretized state spaces instead of realistic continuous set-
tings. Currently employed simplistic notions of uncertainty may lead to incorrect
behavior, and RL agents are often trained without any notion of safe behavior
under uncertainty [72]. Finally, standard safety notions cannot express sophisti-
cated task or correctness specifications.

The state-of-the-art leaves the aforementioned three challenges largely unad-
dressed. Our approaches to fundamentally overcome these restrictions employ
a particularly tight integration of verification and learning. We see the data-
driven nature not as a threat to effective and rigorous verification, but embrace
the inherent access to state-of-the-art machine learning and exploit its flexibility.

Finally, to demonstrate the practical applicability of our work, we use the
QComp [31] and Arch-Comp [1] competitions, and for more Al-related bench-
marks, the OpenAl gym [53] and Google Deepmind’s Al Safety Gridworlds [47].
Towards industrial demonstrators, we use, for instance, case studies from pre-
dictive maintenance, such as [42].

How to Make Intelligent Decisions Under Uncertainty? Various types
and applications of uncertainty play a central role in our research. Uncertainty
has been “largely related to the lack of predictability of some major events or
stakes, or a lack of data” [5]. To name a few, there is uncertainty (1) in techno-
logical, social, environmental, or financial factors in the business literature [60],



28 N. Jansen

(2) about sensor imprecisions and lossy communication channels in robotics [65],
and (3) about the expected responses of a human operator in decision support
systems [45]. The level of uncertainty affects the capabilities of Al systems that
have to make decisions [3,45]. In particular, for strict safety requirements, deci-
sions must be verifiably robust against uncertainty. Such considerations require
precise knowledge about the nature of uncertainty.

Model checking for Al systems necessitates dedicated models. Markov deci-
sion processes (MDPs) capture sequential decision-making problems for agents
operating in uncertain environments [57]. Sensor limitations may lead to partial
observability of the system’s current state, giving rise to partially observable
Markov decision processes (POMDPs) [40]. While mature model checking tools
like PRISM [46], Storm [22], or Uppaal [21] provide efficient synthesis or verifica-
tion methods for MDPs, the situation is different for POMDPs. Policy synthesis
for POMDPs is a hard problem, both from the theoretical and the practical per-
spective [50]. For infinite- or indefinite-horizon problems, computing an optimal
policy is undecidable [49]. Optimal action choices depend on the whole observa-
tion history, requiring an infinite amount of memory.

If precise probabilities are not known, uncertainty models employ so-called
uncertainty sets of probabilities. Uncertain MDPs (uMDPs) use, for exam-
ple, probability intervals or likelihood functions [23,28,52,56,69-71,73]. Similar
extensions exist for uPOMDPs, where uncertainty also affects the observation
model [12,13,20,34,62].

A Motivating Example: Spacecraft Motion Planning. Consider a space-
craft motion planning system which serves as decision support for a human
operator [26,32]. This system delivers advice on switching to a different orbit or
avoiding close encounters with other objects in space. The spacecraft orbits the
earth along a set of predefined natural motion trajectories (NMTs) [43]. While
the spacecraft follows its current NMT, it does not consume fuel. We introduced
the underlying uncertain POMDP model in [20]. The figure to the right depicts
three models that differ only in the level of uncertainty (low, medium, high).
Black spheres are the objects, and the colored lines depict NMTs. The thick red
line indicates a trajectory of the spacecraft including orbit switches along the
NMTs. A policy requires robustness against uncertainty, and memory to predict
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Fig. 1. Robust spacecraft motion planning.
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the location of the spacecraft based on its past trajectory (Fig. 1). The figure
shows that more uncertainty causes less-informed decisions, as policies need to
be more conservative.

2 Research Highlights

In the following, we discuss a number of results that are in line with the afore-
mentioned research challenges to combining formal verification, Al systems, and
reinforcement learning.

2.1 Reliable Neural Network Controllers for Autonomous Agents

Summary. These results are part of the publications [16-18]. Machine learning
methods typically train recurrent neural networks (RNN) to effectively repre-
sent POMDP policies that can efficiently process sequential data. However, it
is hard to verify whether the POMDP driven by such RNN-based policies sat-
isfies safety constraints, for instance, given by temporal logic specifications. We
propose a novel method that combines techniques from machine learning with
the field of formal methods: training an RNN-based policy and automatically
extracting a so-called finite-state controller (FSC) from the RNN. Such FSCs
offer a convenient way to verify temporal logic constraints. Implemented on a
POMDP, they induce a Markov chain. Probabilistic verification methods can
efficiently check whether this induced Markov chain satisfies a temporal logic
specification. Our method exploits this diagnostic information from verification
to either adjust the complexity of the extracted FSC or improve the policy by
performing focused retraining of the RNN. We synthesize policies that satisfy
temporal logic specifications for POMDPs with up to millions of states, three
orders of magnitude larger than comparable approaches.

Generating sequences
of data using MDP M

Concrete model
POMDP M
Specification ¢

Diagnostics on Critical information
induced behavior o . for network retraining
Verification Entropy el aaos » Training Data
test

Increase

precision
FSC Ex- RNN-based
traction policy

Fig. 2. Summary flowchart of the RNN-based refinement loop.



30 N. Jansen

Our Approach: Learning and Verification. We combine the effectiveness of
RNN-based representations from machine learning with the provable guarantees
that are at the heart of formal verification. In a nutshell, we train RNN-based
policy representations from sequences of data, to find candidate policies that
might ensure an agent satisfies a temporal logic specification.

The central technical problem is: How to close the loop between training
an RNN-based policy and efficiently verifying for a candidate policy? First,
FSCs [39,54] encode memory in a finite automata-style fashion. For an FSC
and a POMDP, formal verification methods like model checking are able to
efficiently compute the probability of satisfying a specification [10]. We tightly
integrate formal verification and machine learning towards three key steps: (1)
extracting an FSC from an RNN-based policy, (2) verifying this candidate FSC
for the POMDP against a temporal logic specification, and (3) if needed, either
refining the FSC or generating more training data for the RNN. For an overview,
see Fig. 2.

2.2 Learning Uncertainty Models

Summary. This result is part of the publication [63]. In data-driven appli-
cations, deriving precise probabilities from (limited) data introduces statistical
errors that may lead to unexpected or undesirable outcomes. Consequently, we
aim to learn uncertain MDPs (uMDPs) that use so-called uncertainty sets in
the transitions, accounting for such limited data. Efficient implementations in
tools like PRISM compute robust policies for uMDPs that provably adhere to
formal specifications, like safety constraints, under the worst-case instance in the
uncertainty set. We continuously learn the transition probabilities of an MDP in
a robust anytime-learning approach that combines a dedicated Bayesian infer-
ence scheme with the computation of robust policies. In particular, our method
(1) approximates probabilities as intervals, (2) adapts to new data that may be
inconsistent with an intermediate model, and (3) may be stopped at any time
to compute a robust policy on the uMDP that faithfully captures the data so
far. Similarly, our method is capable of adapting to changes in the environment.
We show the effectiveness of our approach and compare it to robust policies
computed on uMDPs learned by the UCRL2 reinforcement learning algorithm.

Our Approach: Learning an MDP from Data. We propose an iterative
learning method that uses uMDPs as intermediate models and is able to adapt
to new data which may be inconsistent with prior assumptions. The Bayesian
anytime-learning approach employs intervals with linearly updating conjugate
priors [67], and can iteratively improve upon a uMDP that approximates the
true MDP we wish to learn. The key features of our learning method are:

— An anytime approach. At any time, we may stop the learning and compute
a robust policy for the uMDP that the process has yielded thus far, together
with the worst-case performance of this policy against a given specification.
This performance may not be satisfactory, e. g., the worst-case probability to
reach a set of critical states may be below a certain threshold. We continue
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learning towards a new uMDP that more faithfully captures the true MDP
due to the inclusion of further data. Thereby, we ensure that the robust policy
gradually gets closer to the optimal policy for the true MDP.

— Specification-driven. Our method features the possibility to learn in a task-
aware fashion, that is, to learn transitions that matter for a given specification.
In particular, for reachability or expected reward (temporal logic) specifica-
tions that require a certain set of target states to be reached, we only learn
and update transitions along paths toward these states. Transitions outside
those paths do not affect the satisfaction of the specification.

— Adaptive to changing environment dynamics. When using linearly updating
intervals, our approach is adaptive to changing environment dynamics. That
is, if during the learning process the probability distributions of the underlying
MDP change, our method can easily adapt and learns these new distributions.

2.3 Robust Control for Dynamical Systems Under Uncertainty

Summary. These results are part of the publications in [6-8]. We provide proba-
bly correct controllers for dynamical systems that operate in noisy environments,
where the uncertainty can be both aleatoric and epistemic. In particular, we
consider environments where stochastic disturbances in the environment are not
necessarily Gaussian, and external uncertainty may be caused by factors such as
uncertain system parameters. In our work, no explicit representation of a noise
distribution is necessary, but we only assume sampling access to the environ-
ment. Using the so-called scenario approach, we provide probabilistic guarantees
on reach-avoid properties, that is, safely reaching a target while avoiding unsafe
regions of the state space. At the heart of our approach is an abstraction of the
dynamical system into an uncertain MDP. We show that a robust policy for
this finite-state model carries guarantees on the performance of the analogous
controller in the dynamical system.

Our Approach: Probabilities Are Not Enough. We consider stochastic
dynamical models with continuous state and action spaces, under aleatoric and
epistemic uncertainty. More precisely, aleatoric uncertainty captures natural ran-
domness (i.e., stochasticity) in the outcome of transitions, while epistemic uncer-
tainty is in particular modeled by parameters that are not precisely known [59].

— PAC guarantees on abstractions. We show that both probabilities and nonde-
terminism can be captured in the probability intervals of an uncertain MDP.
We use sampling methods from scenario optimization [14] and show that,
with a predefined confidence probability, the uncertain MDP correctly cap-
tures both aleatoric and epistemic uncertainty.

— Correct-by-construction. For the uncertain MDP, we compute a robust optimal
policy that maximizes the worst-case probability of satisfying the reach-avoid
specification. This policy is automatically translated to a provably-correct
feedback controller for the original, continuous model ‘on the fly’. This means
that, by construction, the PAC guarantees on the uncertain MDP carry over
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to the satisfaction of the specification for the continuous model, thus solving
the problem stated above.

— Contributions. We develop the first abstraction-based, formal controller syn-
thesis method that simultaneously captures epistemic and aleatoric uncer-
tainty for continuous-state/action models. We provide results on the PAC-
correctness of obtained uncertain MDP abstractions, and guarantees on the
synthesized controllers for a reach-avoid specification.

2.4 Safe Deep Reinforcement Learning

Summary. These results are part of the publications in [15,29,35,38,55]. A
common approach to safe reinforcement learning is to employ a so-called shield
that forces an RL agent to select only safe actions. However, for adoption in
various applications, one must look beyond enforcing safety and also ensure
the applicability of RL with good performance. We extend the applicability of
shields via tight integration with state-of-the-art deep RL, and provide an exten-
sive, empirical study in challenging, sparse-reward environments under partial
observability. We show that a carefully integrated shield ensures safety and can
improve the convergence rate and final performance of RL agents. We further-
more show that a shield can be used to bootstrap state-of-the-art RL agents:
they remain safe after initial learning in a shielded setting, allowing us to disable
a potentially too-conservative shield eventually.

Our Approach: Shielding in Deep Reinforcement Learning. Our study
demonstrates the following effects of shielding in a partially observable setting.

— Shield construction: We discuss several approaches to effectively construct
and compute a shield in environments that exhibit various sources of uncer-
tainty.

— Safety during learning: Exploration is only safe when the RL agent is provided
with a shield. Without the shield, the agent makes unsafe choices even if it has
access to the state estimation. Even an unshielded trained agent still behaves
unsafe sometimes.

— RL convergence rate: A shield not only ensures safety, but may also sig-
nificantly improve the convergence rate of modern RL agents by avoiding
spending time to learn unsafe actions. Other knowledge interfaces like state
estimators do help to a lesser extent.

— Bootstrapping: Due to the improved convergence rate, shields are a way to
bootstrap RL algorithms, even if they are overly restrictive. RL agents can
learn to mimic the shield by slowly disabling the shield.

— Tool support: We provide an open source tool called COOL-MC! that features
a tied integration between state-of-the-art RL in OpenAl gym [53] and the
Storm model checker [22].

! Available at https://github.com/LAVA-LAB/COOL-MC.
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